
U
i

S
a

b

a

A
A

K
M
B
T
D
G
P

1

i
M
i
m
h
m
Y
H
i
e
s

s
a
i

s
T

0
d

Journal of Chromatography A, 1218 (2011) 3337–3344

Contents lists available at ScienceDirect

Journal of Chromatography A

journa l homepage: www.e lsev ier .com/ locate /chroma

ntargeted metabolite discovery in kinetic data from multi-dose
ntervention studies

onja Petersa,b,∗, Hans-Gerd Janssena,b, Gabriel Vivó-Truyolsb

Unilever Research and Development, Advanced Measurement and Data Modelling, P.O. Box 114, 3130 AC Vlaardingen, The Netherlands
University of Amsterdam, Analytical-Chemistry Group, van’t Hoff Institute for Molecular Sciences, Postbus 94157, 1090 GD Amsterdam, The Netherlands

r t i c l e i n f o

rticle history:
vailable online 18 November 2010

eywords:
etabolic profiling

iomarker discovery
rend analysis
ose–response profiles
ut fermentation
olyphenols

a b s t r a c t

A new strategy for biomarker discovery is presented that is based on multi-dose kinetic metabolomics
data. Gas chromatography–mass spectrometry (GC–MS) data sets recorded in the full scan mode are
scanned for compounds showing a meaningful trend following the different doses and sampling time
points. From a biological point of view, a meaningful trend denotes a compound that responds similarly
at all doses and follows a smooth trend along the time points. This type of information can be used to
distinguish relevant metabolites from those compounds not following the expected trends. The method
is based on analysing the time and dosage trends of each compound via principal component analysis.
As only local information is analysed at a time (meaning no correlation with other metabolites is taken
into account), the proposed model flags relevant metabolites even if their trend is different from that of

any other compound. The new method is therefore an attractive way to reduce the long list of detected
compounds in a metabolomics sample set to include only those having the expected smooth time profile
that is common for all doses. The new strategy is tested on a sample set obtained from a gut fermentation
study of a polyphenol-rich diet. For this study, the initial list of over 25,000 potentially interesting features
was reduced to less than 250, thus significantly reducing the expensive and time-consuming manual
examination.
. Introduction

Metabolic profiling and metabolomics are rapidly gaining
mportance in pharmaceutical and nutritional intervention studies.

etabolomics is the comprehensive study of the metabolome, i.e. it
nvolves the comprehensive identification and quantification of all

etabolites present in biological systems such as plants, animals or
umans. When gas chromatography (GC) is used as the analytical
ethod, the metabolic fingerprint includes small molecules only.

et, metabolic profiles easily contain thousands of compounds.
owever, for a given research question, not all of these may be of

nterest. Thus, the major difficulty in metabolomics usually is the
xtraction of relevant information from the immensely complex
ample profiles recorded.

The study of the metabolome is normally performed in two

teps. In a first step, comprehensive metabolic profiles are recorded
t two occasions, i.e. before and after an intervention. The goal here
s to scan which compounds change due to an intervention. In a
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second step, a kinetic study can be performed targeting specific
metabolites of interest. Kinetic studies are sometimes carried out in
conjunction with multiple doses in order to establish the relation-
ship between concentration profiles and dosage levels. While such
targeted analyses allow monitoring target compounds very sensi-
tive and selective, all other possible metabolic changes are missed.
With the development of new and better analytical instrumenta-
tion, the two historically separate studies, metabolic profiling (i.e.
untargeted analysis) and targeted kinetic or dose–response stud-
ies, can be combined in a single analysis. Realising this, a new
strategy for biomarker discovery utilising sample sets intended
only for target-compound analysis becomes apparent. Clearly, this
calls for new data-analytical methods that are able to use the pre-
knowledge on the expected trends and therefore extract only those
compounds following these trends from the complex data sets.

A widely used method for untargeted data analysis is Principal
Component Analysis (PCA). In PCA, the original variables are pro-
jected onto so-called latent variables or principal components that
point in the direction of the highest variance present in the data.
PCA is generally not able to take into account the structure of com-

plex experimental designs. For example, when multiple sources
of variation exist in data possessing a high number of uncorre-
lated variables, the principal components will point to an average
direction, complicating the interpretation of the PCA model.

dx.doi.org/10.1016/j.chroma.2010.11.023
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:sonja.peters@unilever.com
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Table 1
Parameter values used in MetAlign for baseline correction and alignment.

Parameter Settings

Retention time begin/end (scans) 1–1500
Maximum amplitude 5,500,000
Peak slope factor 0.5
Peak threshold factor 1
Peak threshold 1000
Average peak width at half height 5
Scale on marker peak 211 Da/348
338 S. Peters et al. / J. Chroma

ncorporation of pre-knowledge on the data structure into the
odel can be done by combining ANOVA (Analysis of Variance)
ith simultaneous component analysis (SCA) [1,2] or PCA [3]. More

ecently, this methodology of ANOVA and SCA, also named ASCA,
as been further enhanced by combining it with Parallel Factor
nalysis (PARAFAC) [4]. PARAFAC as a stand-alone method [5] or

n-way) Partial Least Squares (PLS) [6] are also commonly applied
o analyse such higher dimensional structured data sets.

While the above mentioned multivariate methods are very use-
ul for many types of applications, they have one disadvantage in
ur case: multivariate methods are based on the analysis of correla-
ions between variables (metabolites). Such correlations are of less
nterest in kinetic dose–response studies. The pre-knowledge avail-
ble here is that potentially interesting metabolites would (i) have
reasonable time profile and (ii) show the same kinetic trend over
ll doses. Furthermore, the time profiles may differ per metabolite,
eaning that any data-analysis method should be applied locally,

.e. on one potential metabolite at a time.
In earlier work we have utilised the idea of looking for com-

ounds meeting expected trends as a new method for metabolite
iscovery in time-series GC–MS data [7]. In that work, for each
etected compound at a time, the time profile was investigated
o see whether it followed a pre-defined smooth kinetic trend for
he majority of volunteers in the study. This concept of using pre-
nowledge on the time profiles of metabolites was also applied
n the current study, which includes multiple doses and time
oints. Interesting metabolites now are those having a smooth
ime trend that is common for all doses. The tool to do so is
y fitting a PCA model locally and monitoring the magnitude of
he variance explained by the first loading and its smoothness.
rom both features, a short list of potentially interesting metabo-
ites is obtained. This (reduced) list should be evaluated manually
ased on the research question. The procedure is tested on kinetic
ose–response profiles obtained from samples of a gut fermenta-
ion study used to explore the influence of a polyphenol-rich diet
n the human metabolic profiles.

. Experimental

.1. Sample background and preparation

The samples used in this study originated from a gut micro-
ial fermentation experiment that investigated microbial-induced
etabolic changes after polyphenol digestion. In short, a polyphe-

ol mixture was subjected to a simulated digestion by gut microbes
n an in-vitro Simulator of the Human Intestinal Ecosystem (SHIME)
8] at three different levels. Samples were then collected at 15 time
oints (1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 18, 21, 24 h) for each of
he three polyphenol dosage levels (“low, middle and high”). The
ermentations were carried out at the University of Ghent. Exper-
mental details on the gut fermentations can be found elsewhere
9].

All samples were prepared for GC–MS analysis as described in
ef. [10]. In short, after a first centrifugation step, the acidified sam-
les were extracted three times with ethyl acetate. The combined
rganic layers were evaporated to dryness and derivatised using
,O-bis[trimethylsilyl]trifluoroacetamide (BSTFA, Sigma–Aldrich,
wijndrecht, The Netherlands). The gas chromatographic anal-
sis included a 1:10 hot-split injection (1 �L injection volume,
80 ◦C injector temperature) and a temperature-programmed sep-
ration from 45 ◦C to 350 ◦C at 8 ◦C min−1. The column was a

F-17 ms (30 m × 0.25 mm, df = 0.1 �m) from Varian (Varian, Mid-
elburg, The Netherlands). The gas chromatograph used was an
gilent 7890A with a 5975 quadrupole-MS analyser (both from Agi-

ent, Amstelveen, The Netherlands). Full-scan mass spectra were
Initial peak search criteria 0 – 4
1500 – 8

recorded in the mass window from 50 to 600 Da in the electron-
impact (EI) mode at 70 eV. The MS source and the GC–MS interface
were kept at 200 and 320 ◦C, respectively.

The internal standard was trans-cinnamic acid-d6
(Sigma–Aldrich). This internal standard was used to correct
for analytical variation. Additionally, a reference standard mixture
containing phenolic acids spiked to a comparable matrix (i.e.
QC sample) was systematically analysed throughout the whole
series of samples in order to identify other sources of variance
in the analysis series. Phenolic acids were selected as they were
known to be the major metabolites formed in this study. The
relative standard deviation of these selected compounds spiked
at a concentration of 4 �g/mL was typically around 7% for peak
heights, after normalisation by the internal standard.

2.2. Data pre-processing

In total, 45 GC–MS chromatograms were obtained and subjected
to MetAlign [11] for data pre-processing. MetAlign performs back-
ground and noise removal by pruning the original data in order
to contain only those retention time/mass traces that are likely
to originate from a chromatographic peak. The retained retention
time/mass pairs belonging to different samples are then aligned
by using either “rough alignment” or an “iterative alignment” pro-
cedure. For our data set, both options were tested and the rough
alignment resulted in a satisfactory alignment of all samples in
a timely manner. A detailed description of MetAlign is out of the
scope of this article and the authors refer to the MetAlign manual for
more details [11]. Due to the peak-picking process, one compound
can be described by several rows (e.g. one retention time/several
masses), depending on the parameter settings in the software as
well as the peak’s chromatographic or mass spectrometric prop-
erties (e.g. intensity or fragmentation pattern). Peak picking and
alignment are defined by parameters given by the user that need
to be properly selected. A guideline on parameter selection has been
published by Peters et al. [12]. The software finally performs a nor-
malisation of the samples on an internal standard, automatically
located by its retention time and mass. The parameters selected
for peak picking and alignment are given in Table 1. A schematic
of the obtained peak table for our sample set is shown in Fig. 1.
This schematic is the input matrix for our method presented in this
work.

The obtained aligned peak lists were imported into Matlab 2008
(The Mathworks, Natick, MA, USA) for further processing. In a first
step, the data was reduced to only include retention time/mass
pairs between 9 and 22 min and having a mass-to-charge ratio
of 70 Da and higher. These windows were known from previous
studies to contain most relevant biological information.
2.3. Analysis of kinetic dose–response profiles

Fig. 2 shows a schematic of the re-arrangement of the
data set before principal component analysis. Consider first the
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Fig. 1. Schematic of the sample set used in this study. Samples were taken at 15
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ime points between 1 h and 24 h for three doses resulting in 45 chromatograms as
ows in the data matrix and around 25,000 columns corresponding to the retention
ime/mass pairs “detected” by MetAlign.

hromatographic signal at a single retention time/mass pair for all
5 chromatograms (corresponding to all 15 sampling time points at
doses). This data subset can be rearranged to a 3 × 15 matrix; the

ows correspond to the doses and the columns to the 15 sampling
ime points. This matrix is submitted to PCA, as explained below.
efore PCA, the data is pre-processed by standard-normal variate
SNV) transformation [13]. In SNV scaling, the data is first centred
ow-wise and then scaled (row-wise) to unit standard deviation.
entring is commonly performed to remove offsets, while scaling
ill give all variables within a row, i.e. dose, the same variance

hus they will get an equal chance to participate in the PCA model.
olumn-wise mean-centring was not applied as this would disrupt
he structure of the data too much. One should note that one of the

ore means in the method presented here is to check the smooth-
ess of the loadings along the different sampling time points (see
elow). As each column corresponds to one sampling time point,
olumn-wise mean-centring would shift the relative position of

ig. 2. Schematic overview on the method presented here. See text for further
xplanation.
1218 (2011) 3337–3344 3339

each sampling point, thus modifying the value of the smoothness.
An in-depth discussion on data pre-processing is out of the scope
of this article and more details can be found in literature [14].

After pre-processing, PCA is performed with the subset of the
data. As the columns of the matrix correspond to sampling time
points, the first loading of the PCA model corresponds to a descrip-
tion of the time profile that describes the maximum variance of
the data, i.e. the common trend explaining all three doses the best.
Two features of this common trend are monitored: (i) the variance
explained by this common trend (relative to the total variance of the
matrix) and (ii) its smoothness. A compound is considered relevant
when both features are high. First, the relative variance explained
by the first loading informs about how common this trend is. In
other words, a low relative variance would mean that the amount
of information retained by this first loading is low and this com-
pound does not show a common pattern among the different doses.
Secondly, the loadings should be smooth. An interesting peak or
metabolite (experiencing a change due to the intervention) should
not show too many maxima and valleys during the 24 h following
the intervention. If it does, it is likely that the variation experienced
by this peak is due to a random variation and hence the compound
is not of interest.

Autocorrelation constitutes one way to measure the smoothness
of the loadings: the smoother the signal, the closer the autocor-
relation is to 1. If only random variation is present in the data,
autocorrelation should be zero or near-zero. Negative autocorre-
lation would be obtained for data series showing high frequency
noise. In our case, we are interested in selecting those retention
time/mass pairs whose loadings of the first principal component
show a smooth trend, meaning they will have an autocorrela-
tion value close to 1. Various autocorrelation functions have been
described in literature. In this study, the function by Vivó-Truyols
et al. [15] (Eq. (1)) was selected:

� = 1 −
{

0.5 ×
∑

(yi − yi−1)2∑
(yi)

2
· n

n − 1

}
(1)

where yi corresponds to the value of the first PCA loading at the
ith sampling time point, and n to the number of sampling time
points. The values of y should be previously centred by the mean of
y calculated over all time points. Autocorrelation functions assume
that the sampling time points are equally spaced. This condition
is not fulfilled in this work. However, as we are not interested in
absolute values of � but in relative ones (comparing to other cases
measured at exactly the same sampling points), the condition of
having equally-spaced sampling points could be ignored. Note that
� is partially described by the sum of squares of each time-point yi
and its previous time point yi−1. This type of equation is also called
‘lag 1’-autocorrelation [16] as only the intensity of the previous
time point is being taken into account. Lag 1 was selected as higher
lags did not improve the results (data not shown).

3. Results and discussion

The key feature of our new approach for metabolite discovery is
the inclusion of pre-knowledge on combined concentration profiles
and dosage levels. Only biomarkers that have similar concentration
profiles for all doses are of interest and thus, data analysis on the
concentration profiles of individual dosages is not the most logical
choice. A data analysis method is presented below that takes time
profiles and dosage information simultaneously into account.
3.1. Local PCA

As shown in the schematic in Fig. 2, PCA is performed on the
data matrix of one retention time/mass pair at a time. For each
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an estimation of how many potential metabolites are represented
by the number of retention time/mass pairs that have to be veri-
fied. These now need to be manually reviewed for the likelihood
that they indeed represent possible new metabolites of interest.

Table 2
Combinations of �-values and percentage variance explained and their respective
number of retention time/mass pairs found to be of interest. An estimation of the
number of metabolites corresponding to these pairs is also given.

� % var. expl. Features Compounds

0.85 90 26 7
ig. 3. Values of � and % of variance explained obtained for each retention time/m
gure corresponds to one retention time/mass pair. The time trends of two retention
o dose 1, the dashed line corresponds to dose 2, and the solid line to dose 3. Insert

air, a �-value as well as a number for the percentage of explained
ariance is obtained. These two can be plotted against each other
s shown in Fig. 3. Here, each point in the figure corresponds to
ne retention time/mass pair. Several interesting observations can
e made in this plot. Firstly, there are a lot of retention time/mass
airs which are associated with a negative or ‘close to zero’ autocor-
elation value. Due to the low number of sampling points, random
ehaviour yields �-values that are not exactly zero. Additionally,
igh-frequency noise (yielding negative �-values) may be intro-
uced in the data due to the pre-processing software. The negative
-values are not of interest in this case, which becomes clear when

nvestigating the loadings of a retention time/mass pair associ-
ted with a negative or zero value of autocorrelation (Fig. 3B).
he loadings shown are not smooth and when the three doses
re overlaid, only noise is detected for this retention time/mass
air.

The most relevant retention time/mass pairs are those that
esult in a PCA model which first loading has a high autocorrela-
ion (high �-value) and which first principal component describes

ost of the variance. High autocorrelation in the first loading cor-
esponds to a smooth evolution of this compound over time and
high value of explained variance means that the shape of this

volution is common to all doses. Retention time/mass pairs with

igh � and high variance explained are located at the top right cor-
er of Fig. 3. An example is shown in Fig. 3C. The overlaid dosage
urves clearly show a common trend for all doses (which makes the
xplained variance with the first PC high) and the corresponding
ir after applying the local PCA method described in Section 2.3. Each cross in this
/mass pairs (encircled) are depicted in 3B and 3C. The dash-dotted line corresponds
he figures are the corresponding loading plots.

loadings (insert in Fig. 3C) are smooth (making the autocorrelation
value high). The choice on how many retention time/mass pairs
are to be (manually) checked is somewhat arbitrary and needs to
be tested for each sample set. Table 2 gives an overview on the
number of markers obtained with various, reasonable thresholds.
As can be seen when decreasing the cut-off point for the �-value
from 0.85 to 0.7 at a threshold of 90% explained variance, the num-
ber of detected pairs increases from 26 to 250. When the threshold
for relative explained variance was lowered to 70%, many more
retention time/mass pairs were detected, especially in combination
with a �-cut-off of 0.7. These thresholds yield more than 1000 pairs
being flagged as “potentially of interest”. The fourth column gives
0.8 90 222 18
0.7 90 250 23
0.85 70 79 24
0.7 70 1182 100
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Fig. 4. PCA score plot obtained when applying PCA to the whole data set. Numbers correspond to the sampling time points and encircled regions correspond to doses.
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aptured variances are 50.67% (PC 1) and 22.75% (PC 2). The score plot for dose 2 is
epicts the loadings plot for the first PC.

dditionally, the thresholds should be established in such a way
hat a reasonable (low) number of false positives are obtained.
n other words, the number of time/mass pairs that are wrongly
agged as potential biomarkers (when in fact they are not) should
e low. One way to measure the type I error is performing ran-
om permutation tests [17]. In this case, we have permuted the
etabolite labels so that in each PCA model the dosages of differ-

nt metabolites are included. For each permutation, one �-value
nd one value for the percentage explained variance is obtained.

For every set of thresholds as presented in Table 2, a false dis-
overy rate, fdr, can now be calculated using Eq. (2):

dr = f (perm)/N(perm)
f (real)/N(real)

(2)

here f(perm) and f(real) are the number of pairs found to be
otentially of interest when the data is permuted (perm) and non-
ermuted (real). N(perm) equals the number of permutations and
(real) equals the number of retention time/mass pairs in the orig-

nal data set. For 2 million permutations and using a threshold
f 0.85 as the minimum �-value and including only compounds
hich PCA model can explain more than 90% of variance with their
rst principal component, 26 retention time/mass pairs or about
even compounds could be identified as potentially interesting
etabolites (see Table 2). When the class labels are permuted, only

ne retention time/mass pair is found above these two thresholds,

esulting in a false discovery rate of 9.4e−4. For the other thresholds
resented in Table 2, the false discovery rates are 0.0024, 0.0030,
.0342 and 0.0506, respectively. These values can also be used to
additionally) verify which threshold combination will result in the
ted in detail in 4B. The arrow depicts the direction of increasing sampling time. 4C

most meaningful and reliable markers. As can be seen only the last
combination of thresholds (� = 0.7 and % explained variance greater
than 70%) results in a false discovery rate higher than 5%. Also,
using 90% rather than 70% explained variance as threshold results
in a roughly 10-fold lower fdr, indicating a higher confidence in the
markers obtained using those thresholds.

3.2. Global PCA

In order to compare the results from the previous section with
standard techniques, the data set as presented in Fig. 1 was also sub-
jected as a whole to principal component analysis. In this case, the
data was mean-centred column-wise (i.e. per retention time/mass
pair) before PCA analysis. Fig. 4 shows the score plot of the first
two principal components obtained, with the first PC describing
50.67% of the variance and the second PC 22.75%. It can be seen that
the variance captured by the first PC mainly corresponds to dose
effects (see circled groups in the figure) while the second PC mainly
describes the effect of sampling time. However, for both effects,
no clear separations can be obtained. Fig. 4B is a zoom into Fig. 4
for the second dose with the arrow pointing along the direction of
the sampling time points. For this dose, the time trend is visible
with the first and the last sampling time points being clustered
together. This suggests that metabolites that have similar start-
ing and end concentrations, e.g. metabolites that are first formed

and then disappear at the time-scale of the experiment, have the
strongest impact on the PCA model. However, for the other doses,
no such clear time trend can be detected, meaning that the variance
captured by the first PC is not only based on sampling time points.
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Fig. 5. Loadings of the first PC obtained by global PCA vs. the single value M obtained for local PCA. M is obtained by multiplying � by the % of variance explained. Each point
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n the plot corresponds to one retention time/mass pair. Circles (A–D) correspond to
n detail below. In 5A–5D, the dash-dotted lines correspond to dose 1, dashed lines

he loadings plot of PC 1 is depicted in Fig. 4C. In this figure, all
etention time/mass pairs that have an absolute value of the load-
ng value above the noise level are interesting possible metabolites
or further (manual) assessment. That is because their impact on
he PCA model is the largest. However, in contrast to the local PCA

odel, in global PCA we are fitting a PCA model to the data set
s a whole. The model therefore tries to find latent variations in
ampling time and dose that can be explained by a combination of
etabolites. In other words, the model finds a “common pattern”

hat is able to explain the variability in the data at all doses and

t all sampling times. The obtained “interesting metabolites”, i.e.
hose which are flagged by a large absolute value of the loading,
re therefore difficult to interpret biologically as the variability in
he data is due to different sources (time and dose).
cular retention time/mass pairs whose kinetic dose–response profiles are depicted
pond to dose 2 and the solid lines to dose 3.

3.3. Comparison of the two methods

Fig. 5 shows the results of both PCA methods plotted against
each other. For simpler visualisation, the autocorrelation value and
the relative variance explained by the local PCA model are multi-
plied to a single value M. Therefore, M constitutes a single number
collecting both the smoothness of the first loading and its impor-
tance. In Fig. 5, the loading of the first PC from the global PCA
method (as seen in Fig. 4C) is plotted against M. Each point in
the plot corresponds to one retention time/mass pair. Following

the discussions in Sections 3.1 and 3.2, both methods highlight
interesting retention time/mass pairs when a high M (X-axis) or
a high absolute value of the loading (Y-axis) is obtained. However,
as will be discussed below, different subsets of retention time/mass
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Table 3
List of metabolites flagged by the local PCA and global PCA methods. Local PCA was
performed using � >0.8 and >90% of explained variance as thresholds. With global
PCA, a threshold of 0.03 for the absolute value of the loadings was used. A cross in
the corresponding column (local PCA or global PCA) means that the corresponding
metabolite was flagged by the corresponding PCA method.

Retention time Compound ID Local PCA Global PCA

8.12 Phenylacetic acid X X
8.31 Catechol X
8.73 Unknown X
9.88 Phenylpropionic acid X X

10.2 Unknown X
11.09 Unknown X
11.44 Unknown X
11.65 Pyrogallol X
12.16 3-Hydroxybenzoic acid X X
12.75 3-Hydroxyphenylacetic acid X X
13.01 4-Hydroxybenzoic acid X
13.2 4-Hydroxyphenylacetic acid X
14.43 3-Hydroxyphenylpropionic acid X
14.88 4-Hydroxyphenylpropionic acid X X
14.95 Vanillic acid X
15.16 Unknown X
15.7 3,4-Dihydroxybenzoic acid X X
15.8 3,4-Dihydroxyphenylacetic acid X X
16.24 Unknown X
16.76 Syringic acid X
17.12 2-Hydroxyphenylvaleric acid X
17.25 p-Coumaric acid X X
17.29 3-o-Methylgallic acid X X

F
l

S. Peters et al. / J. Chroma

airs are being flagged as “interesting” by the two methods. In
act, four groups of extremes can be found in Fig. 5. The kinetic
ose–response curves of an example for each group are depicted in
igs. 5A–D: retention time/mass pairs that have a low M-value and
loading close to zero (5A), pairs that have a high loading (pos-

tive or negative) and a low M-value (5B), pairs that have a high
oading (positive or negative) and a high M-value (5C) and those
hat have a high M-value but a loading close to zero (5D). Reten-
ion time/mass pairs in group A are of least interest as they will
ot be flagged as “interesting” by any of the methods. They only
escribe noise as can be clearly seen in Fig. 5A. Pairs in group B
ill only be flagged with the global PCA model as their loading is

ather high while their M-value is low. That means that they are
mportant for the overall PCA model, but do not exhibit a smooth,
ommon trend for all doses. This becomes clear when overlaying
he kinetic dose–response curves of one retention time/mass pair
n that group (5B). Clearly, no common trend can be observed and

hen the loadings for this pair are investigated no smooth time
rend can be seen (plot not shown). Fig. 5C gives an example of
kinetic dose–response curve for a pair present in group C (high
-value, high loadings). The pairs in this group will be flagged as

of interest” with respect to both PCA models. It can be seen that
(rather) smooth trend is obtained for all doses, which explains
hy it is picked up by the local PCA method. When the global

CA model is considered, it can only be said that this compound
hows a high correlation with other compounds that are impor-
ant for the PCA model. The opposite can be said for pairs found
n group D. These pairs do not contribute much to the global PCA

odel, i.e. they would not be picked up with the global PCA method;
owever, a smooth, common trend can be seen for all doses
see Fig. 5D).

.4. Biological interpretation

Any data-analytical method is best validated biologically, mean-
ng that the results obtained must be interpretable and answering
he biological question of the study. Table 3 gives an overview on
he possibly interesting metabolites found by both methods. For
pplying PCA locally, all metabolites were selected which are asso-
iated with a �-value of greater 0.8 and 90% explained variance.
or the global PCA method, the threshold selected was an absolute

alue of the loading above 0.03. Note that this number is derived
isually from the loadings plot (Fig. 4C). While there is generally
good agreement between the two methods some metabolites

re only found when PCA is applied locally, while others are only

ig. 6. Kinetic dose–response profiles of two metabolites, vanillic acid (part A) and 4-hyd
ines correspond to dose 2 and the solid lines to dose 3.
17.55 Gallic acid X X
19.67 Unknown X

flagged by the overall PCA method. Knowing the background of
the present (polyphenol) study, phenolic acids were expected as
major metabolites, which was confirmed by the mass spectra of the
compounds in the reduced peak lists. Fig. 6 shows the kinetic pro-
files of two of them, vanillic acid (6A) and 4-hydroxyphenylacetic
acid (6B). Vanillic acid (� = 0.84, % variance explained = 92.37%) is
flagged by the local PCA method only. Clearly, all three curves
have a common trend and a smooth loading (insert in Fig. 6A). 4-
Hydroxyphenylacetic acid (� = 0.78, % variance explained = 65.74%)
is flagged by the global PCA method only. This is easy to understand
as our requirement was a common profile for all three doses and,
as can be seen in Fig. 6B, this is not the case for this metabolite. For

two of the doses, no clear response profile is obtained, while for the
third, a typical appearance–disappearance curve can be observed.
Thus, the percentage of variance explained is rather low. The load-
ings obtained with the local PCA method for this metabolite (insert

roxyphenylacetic acid (part B). The dash-dotted lines correspond to dose 1, dashed
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n Fig. 6B) are difficult to interpret and seem to be dominated by
he response profile of the third dose. Generally, the global PCA

ethod is flagging compounds which correlations are described
ell by the first principal component. The understanding of why

ertain compounds have high loadings in the global PCA method
s not easy as the global PCA model is based on mixed effects
time and dose). With the local PCA method, however, the inter-
retation of the results is very straight-forward and the only factor
o consider is how many possible metabolites may be included
n the (manual) analysis of the results, i.e. which thresholds to
elect.

. Conclusions

Scanning data sets for compounds that meet expected trends
s an interesting route for data analysis in metabolomics. In the
urrent kinetic multi-dose study, an interesting metabolite was
efined as having a smooth trend over sampling time that is com-
on for all doses. When principal component analysis is performed

ocally, i.e. on one compound at a time, the information obtained
an be used to extract compounds defined to be of interest while
ismissing all others. Therefore, a quick analysis of the kinetic
urves of all compounds present in the sample set can be carried
ut.

Using the newly developed method a list of thousands of possi-
le metabolites could be reduced to just 18 compounds that meet
he set of pre-knowledge criteria (i.e. concentration and dosage
rofiles). In order to validate that possible markers are not obtained

ue to chance, permutation tests were performed. When applying
CA to the sample set as a whole as commonly performed, some of
hese markers were missed, while others were selected that do not
ollow a specific pattern with dose and/or time. With our method,

[

[
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easily interpretable results are obtained and laborious (manual)
data analysis is greatly reduced.
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